Advanced Python Training Course in Solapur
Best Python Advanced Training Institute in Solapur
Shreevidya Infotechnologies Advanced Python course offers a comprehensive Course training that will help you master fundamentals, advanced theoretical concepts like writing scripts, sequence and file operations in Python while getting hands-on practical experience with the functional applications as the training is blended with hands on assignments and live projects.
Python trainers carry extensive experience, has passion for training and considered to be the best in the industry. Python training in Shreevidya Infotechnologies covers topics from beginner level to advanced level with lots of examples.
We are providing most demanded technical training since 2007.
- Duration: 1.5 month
- Mode: class room
- Study Material: Yes
- Project: Yes
Syllabus
- Importance of modular programming
- What is module
- Types of Modules – Pre defined; User defined.
- User defined modules creation
- Functions based modules
- Class based modules
- Connecting modules
- Import module
- From … import
- Module alias / Renaming module
- Built In properties of module
- Organizing python project into packages
- Types of packages – pre defined, user defined.
- Package v/s Folder
- py file
- Importing package
- PIP
- Introduction to PIP
- Installing PIP
- Installing Python packages
- Un installing Python packages
- Procedural v/s Object oriented programming
- Principles of OOP – Encapsulation, Abstraction (Data Hiding)
- Classes and Objects
- How to define class in python
- Types of variables – instance variables, class variables.
- Types of methods – instance methods, class method, static method
- Object initialization
- ‘self’ reference variable
- ‘cls’ reference variable
- Access modifiers – private (__), protected (_), public
- AT property class
- Property () object
- Creating object properties using setaltr, getaltr functions
- Encapsulation (Data Binding)
- What is polymorphism?
- Overriding
- Method overriding
- Constructor overriding
- Overloading
- Method Overloading
- Constructor Overloading
- Operator Overloading
- Class re-usability
- Composition
- Aggregation
- Inheritance – single , multi level, multiple, hierarchical and hybrid inheritance and Diamond inheritance
- Constructors in inheritance
- Object class
- super()
- Runtime polymorphism
- Method overriding
- Method resolution order(MRO)
- Method overriding in Multiple inheritance and Hybrid Inheritance
- Duck typing
- Concrete Methods in Abstract Base Classes
- Difference between Abstraction & Encapsulation
- Inner classes
- Introduction
- Writing inner class
- Accessing class level members of inner class
- Accessing object level members of inner class
- Local inner classes
- Complex inner classes
- Case studies
- What is Exception?
- Why exception handling?
- Syntax error v/s Runtime error
- Exception codes – AttributeError, ValueError, IndexError, TypeError…
- Handling exception – try except block
- Try with multi except
- Handling multiple exceptions with single except block
- Finally block
- Try-except-finally
- Try with finally
- Case study of finally block
- Raise keyword
- Custom exceptions / User defined exceptions
- Need to Custom exceptions
- Case studies
- Understanding regular expressions
- String v/s Regular expression string
- “re” module functions
- Match()
- Search()
- Split()
- Findall()
- Compile()
- Sub()
- Subn()
- Expressions using operators and symbols
- Simple character matches
- Special characters
- Character classes
- Mobile number extraction
- Mail extraction
- Different Mail ID patterns
- Data extraction
- Password extraction
- URL extraction
- Vehicle number extraction
- Case study
- Introduction to files
- Opening file
- File modes
- Reading data from file
- Writing data into file
- Appending data into file
- Line count in File
- CSV module
- Creating CSV file
- Reading from CSV file
- Writing into CSV file
- Object serialization – pickle module
- XML parsing
- JSON parsing
- Logging Levels
- implement Logging
- Configure Log File in over writing Mode
- Timestamp in the Log Messages
- Python Program Exceptions to the Log File
- Requirement of Our Own Customized Logger
- Features of Customized Logger
- How to use Date & Date Time class
- How to use Time Delta object
- Formatting Date and Time
- Calendar module
- Text calendar
- HTML calendar
- Shell script commands
- Various OS operations in Python
- Python file system shell methods
- Creating files and directories
- Removing files and directories
- Shutdown and Restart system
- Renaming files and directories
- Executing system commands
- Introduction
- Multi tasking v/s Multi threading
- Threading module
- Creating thread – inheriting Thread class , Using callable object
- Life cycle of thread
- Single threaded application
- Multi threaded application
- Can we call run() directly?
- Need to start() method
- Sleep()
- Join()
- Synchronization – Lock class – acquire(), release() functions
- Case studies
- Introduction
- Importance of Manual garbage collection
- Self-reference objects garbage collection
- ‘gc’ module
- Collect () method
- Threshold function
- Case studies
- Introduction to DBMS applications
- File system v/s DBMS
- Communicating with MySQL
- Python – MySQL connector
- connector module
- connect () method
- Oracle Database
- Install cx_Oracle
- Cursor Object methods
- execute() method
- executeMany() method
- fetchone()
- fetchmany()
- fetchall()
- Static queries v/s Dynamic queries
- Transaction management
- Case studies
- What is Sockets?
- What is Socket Programming?
- The socket Module
- Server Socket Methods
- Connecting to a server
- A simple server-client program
- Server
- Client
- Introduction to GUI programming
- Tkinter module
- Tk class
- Components / Widgets
- Label , Entry , Button , Combo, Radio
- Types of Layouts
- Handling events
- Widgets properties
- Case studies
- Numpy
- Introduction
- Scipy
- Introduction
- Arrays
- Datatypes
- Matrices
- N dimension arrays
- Indexing and Slicing
- Pandas
- Introduction
- Data Frames
- Merge , Join, Concat
- MatPlotLib introduction
- Drawing plots
- Introduction to Machine learning
- Types of Machine Learning?
- Introduction to Data science
- Introduction to PYTHON Django
- What is Web framework?
- Why Frameworks?
- Define MVT Design Pattern
- Difference between MVC and MVT
PANDAS
Pandas – Introduction
Pandas – Environment Setup
- Dimension & Description
- Series
- DataFrame
- Data Type of Columns
- Panel
- Series
- Create an Empty Series
- Create a Series f
- rom ndarray
- rom dict
- rom Scalar
- Accessing Data from Series with Position
- Retrieve Data Using Label (Index)
- DataFrame
- Create DataFrame
- Create an Empty DataFrame
- Create a DataFrame from Lists
- Create a DataFrame from Dict of ndarrays / Lists
- Create a DataFrame from List of Dicts
- Create a DataFrame from Dict of Series
- Column Selection
- Column Addition
- Column Deletion
- Row Selection, Addition, and Deletion
- Panel()
- Create Panel
- Selecting the Data from Panel
- DataFrame Basic Functionality
- Functions & Description
- Summarizing Data
- Table-wise Function Application
- Row or Column Wise Function Application
- Element Wise Function Application
- Reindex to Align with Other Objects
- Filling while ReIndexing
- Limits on Filling while Reindexing
- Renaming
- Iterating a DataFrame
- iteritems()
- iterrows()
- itertuples()
- By Label
- Sorting Algorithm
- get_option(param)
- set_option(param,value)
- reset_option(param)
- describe_option(param)
- option_context()
- .loc()
- .iloc()
- .ix()
- Use of Notations
- Percent_change
- Covariance
- Correlation
- Data Ranking
- .rolling() Function
- .expanding() Function
- .ewm() Function
- Applying Aggregations on DataFrame
- Cleaning / Filling Missing Data
- Replace NaN with a Scalar Value
- Fill NA Forward and Backward
- Drop Missing Values
- Replace Missing (or) Generic Values
- Split Data into Groups
- View Groups
- Iterating through Groups
- Select a Group
- Aggregations
- Transformations
- Filtration
- Merge Using ‘how’ Argument
- Concatenating Objects
- Time Series
- Object Creation
- Bar Plot
- Histograms
- Box Plots
- Area Plot
- Scatter Plot
- Pie Chart
NUMPY
NUMPY − INTRODUCTION
NUMPY − ENVIRONMENT
NUMPY − NDARRAY OBJECT
NUMPY − NDARRAY OBJECT
- Data Type Objects (dtype)
- shape
- ndim
- itemsize
- flags
- empty
- zeros
- ones
- asarray
- frombuffer
- fromiter
- arange
- linspace
- logspace
- Integer Indexing
- Boolean Array Indexing
- Iteration
- Order
- Modifying Array Values
- External Loop
- Broadcasting Iteration
- reshape
- ndarray.flat
- ndarray.flatten
- ravel
- transpose
- ndarray.T
- swapaxes
- rollaxis
- broadcast
- broadcast_to
- expand_dims
- squeeze
- concatenate
- stack
- hstack and numpy.vstack
- split
- hsplit and numpy.vsplit
- resize
- append
- insert
- delete
- unique
- bitwise_and
- bitwise_or
- invert()
- left_shift
- right_shift
- Trigonometric Functions
- Functions for Rounding
- reciprocal()
- power()
- mod()
- amin() and numpy.amax()
- ptp()
- percentile()
- median()
- mean()
- average()
- Standard Deviation
- Variance
- sort()
- argsort()
- lexsort()
- argmax() and numpy.argmin()
- nonzero()
- where()
- extract()
- ndarray.byteswap()
- No Copy
- View or Shallow Copy
- Deep Copy
- empty()
- matlib.zeros()
- matlib.ones()
- matlib.eye()
- matlib.identity()
- matlib.rand()
- dot()
- vdot()
- inner()
- matmul()
- Determinant
- linalg.solve()
- Sine Wave Plot
- subplot()
- bar()
- histogram()
- plt()
- save()
- savetxt()